CuDNN官方版是一款专为Deep Learning框架打造的GPU计算加速工具。CuDNN最新版是能够用于深层神经网络的GPU加速库,支持的DL库包括Caffe,ConvNet, Torch7等。CuDNN软件新增了协作组,可以帮助用户用于同步协作线程的单一结构,是GPU训练模型的必备工具。
cuDNN下载功能介绍
在并行运算中,线程通常需要合作来执行集体运算。
构建这些协作代码需要对协作线程进行分组和同步。
CUDA 9引入了协作组,一个用于组织通信线程组的编程模型。
历史上,CUDA编程模型提供了一个用于同步协作线程的单一结构,然而,程序员通常希望以小于线程块粒度来定义线程组。并在其中同步,以便以“集体”组功能接口的形式实现更高的性能,设计灵活性和软件复用。
协作组介绍了以子块和多块粒度明确定义线程组的能力,并对其进行集体操作,例如同步。编程模型支持跨软件边界的明确组合,使得库和实用程序功能可以在其上下文中安全同步,而无需对收敛进行假设。它允许开发人员针对硬件快速路径进行优化,例如GPU翘曲大小 - 以安全,可支持的方式使用灵活的同步,使程序员意图明确。协作组原本在CUDA中实现了合作并行性的新模式,包括整个网格中的生产者 - 消费者并行性,机会主义并行性和全局同步。
协作组还提供了一个抽象,开发人员可以编写灵活,可扩展的代码,以便在不同的GPU架构中安全工作,包括扩展到未来的GPU功能。线程组的大小可以从几个线程到整个线程块,到网格启动中的所有线程块,跨越多个GPU的网格。
协作组编程模型由以下元素组成:
用于表示协作线程组的数据类型;
由CUDA启动API定义的默认组(例如,线程块和网格);
将现有组划分为新组的操作;
同步组内所有线程的屏障操作;
检查组属性以及针对集团的集体的操作。
cuDNN下载软件亮点
提高编译器性能
用于编程Tensor Core矩阵的新型API在Tesla V100上进行乘法或加法的操作
更快的程序库用于线性代数,图像处理,FFT等
协作组,一个用于管理通信线程组的新编程模型
扩大开发平台和主机编译器,包括Microsoft Visual Studio 2017, Clang 3.9, PGI17.1和GCC6.x
CUDA 支持新的NVIDIA Volta 架构
支持VoltaGPU架构,包括新的Tesla V100 加速器
在CuSolver和nvGroup中的新算法
新的NVIDIA Visual Profiler支持Volta V100以及改进同一内存的分析功能
在CUDA设备代码中支持 C++14
CUDA 的核心是支持新型Volta架构,特别是GTC 2017推出的新Tesla V100 GPU加速器。
cuDNN下载下载安装步骤
1、解压cudnn10.rar安装包
cuda默认安装路径
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1
2、将cuda加入系统环境,设置环境变量:
计算机上点右键,打开属性->高级系统设置->环境变量,可以看到系统中多了CUDA_PATH和CUDA_PATH_V10_1两个环境变量,接下来,还要在系统中添加以下几个环境变量:
CUDA_SDK_PATH = C:ProgramDataNVIDIA CorporationCUDA Samplesv10.1(这是默认安装位置的路径)
CUDA_LIB_PATH = %CUDA_PATH%libx64
CUDA_BIN_PATH = %CUDA_PATH%bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%binwin64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%commonlibx64
在系统变量 PATH 的末尾添加:
%CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_LIB_PATH%;%CUDA_SDK_BIN_PATH%;
再添加如下4条(默认安装路径):
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1libx64;
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1bin
C:ProgramDataNVIDIA CorporationCUDA Samplesv10.1commonlibx64;
C:ProgramDataNVIDIA CorporationCUDA Samplesv10.1binwin64;
3、验证是否配置成功,分别运行这两个程序deviceQuery.exe、bandwidthTest.exe ,cd到安装目录下的 ...extrasdemo_suite,result=pass则安装成功